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Abstract-The modelling of a complex process such as rock fracture is fraught with problems including: (i) the 
number and complexity of the processes in operation during fracture; and (ii) the heterogeneity of the material 
under consideration. These considerations force modellers to adopt a 'notional' approach. In this paper we 
describe a model of fracture which attempts to mimic the processes that govern seismogenesis by using a rule­
based algorithm. This allows us to capture the essential physical aspects of the system while allowing a realistic 
heterogeneity in the form of a large number of lattice elements. We describe the model and present the 
preliminary results from such a rule-based algorithm, or cellular automaton. These results illustrate that initial 
strength distributions have a crucial influence on the fracture pattern that is produced. 

INTRODUCTION TO THE MODEL 

This work derives from a purely two-dimensional lattice 
fracture model (Henderson et al. 1994) in which failure 
could take place only in mode I producing a plan view of 
the failure process. The inclusion of the BGK model for 
fluid flow (Bhatnager et al. 1954) allows the determi­
nation of fluid pressure at each lattice site and prompted 
the use of the Griffith-crackIMohr-Coulomb failure 
criterion since effective stress could be calculated across 
the lattice. The use of this failure criterion also imparts a 
three-dimensionality to the model since failure can take 
place out of the 01-02 plane. In order to accommodate 
the three-dimensionality introduced by using a Griffith­
crack/Mohr-Coulomb failure criterion, the model may 
be thought of as representing small fractures in a devel­
oping fault zone and envisaged as the projection of this 
onto a two-dimensional visualization plane (Fig. 1). 
Thus adjacent elements on the lattice may fail in differ­
ent orientations but as a whole it is assumed that they 
will eventually form part of one shear surface. 
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Fig. 1. A two-dimensional, anti-plane (i.e. cross-sectional) view of 
failure projected onto a two-dimensional visualization plane (plan 

view). 

Failure of the model takes place by applying a slowly­
increasing stress to the lattice. Each lattice element is 
assigned a notional tensile strength (cf. Initial Con­
ditions) and fails whenever this strength is exceeded by 
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(i) 

Fluid particle and direction of movement: .. 

Lattice element: 0 

Fig. 2. (i) A 3 x 3 array of lattice elements containing one central 
element and defining its six nearest neighbours. (ii) The conceptual 
manner in which this lattice group is treated within the model illustrat-

ing the movement of fluid particles from lattice site to lattice site. 

the applied stress. The load supported by this element is 
then transferred to its nearest neighbours. In this way 
stress becomes concentrated onto the stronger elements 
of the lattice causing an increased likelihood of unstable 
fracture propagation. In contrast to this process of 
increased instability, fluid pressure fluctuations tempor­
arily halt this unstable propagation: whenever an ele­
ment fails, fluid pressure at that site is reduced causing 
an influx of fluid from the surroundings, reducing fluid 
pressure and temporarily stabilising fracture propaga­
tion. These two processes, one causing temporary stab­
ility and one causing increased instability, control the 
behaviour of the model. 

INITIAL CONDITIONS 

In this preliminary study a number of strength distri­
butions, some fractal and some non-fractal, are used to 
investigate the effect of the strength distribution on the 
resultant fracture population. These distributions con­
sist of: (i) a spatially fractal distribution derived from a 
Gaussian model (Huang & Turcotte 1989); (ii) a Weibull 
distribution (Turcotte 1992) which is spatially non­
fractal yet it has a fractal size distribution except at large 
values; (iii) a random uniform, and (iv) a random 
Gaussian distribution. 

THE FLUID MODEL 

As mentioned above, the model is based on a two­
dimensional hexagonal lattice. This hexagonal format is 
achieved by ignoring the north-eastern and south­
western elements of a 3 x 3 lattice group (Fig. 2). 
Computationally this arrangement is trivial yet it is 
fundamental to the functionality of the fluid model. The 
fluid model works by reducing fluid movements to 
particles of fluid which move around the lattice colliding 
with each other as the simulation progresses. Fluid 
pressure is derived from the probability of finding fluid 
particles at any site at any time. This model is derived 

from the FHP lattice model (Frisch et al. 1986) and the 
lattice Boltzmann model (Benzi et al. 1992). 

THE FAILURE CRITERION 

The failure criterion is based on a Griffith-crack! 
Mohr-Coulomb model giving a parabolic failure envel­
ope from To:::; on:::; -2To, and a linear failure envelope 
from On ;::-; To. This parabolic failure envelope is de­
scribed by equation (1) and relates the shear stress, T, to 
the normal stress, on' given a tensile strength, To: 

(1) 

For failure to occur the Mohr circle describing the load 
on an element must touch the failure envelope. Thus for 
tensile failure the minimum principal effective stress, 
03 = To· For mixed mode failure - To < 0mean < -2To, 
where 0mean is the mean stress. These simple compara­
tive criteria make the determination of different failure 
types computationally very efficient. In this model it is 
assumed that 01 "'" Oz. 

Although the Griffith-crack/Mohr-Coulomb failure 
criterion is ideal for the purpose of modelling, it must be 
remembered that it does not provide an accurate model 
for microscopic failure and should not be used as such 
(Scholz 1990). Nevertheless it has a firm experimental 
basis and is appropriate for the scale of interest of this 
study. 

RESULTS 

Figure 3 shows the evolving fracture populations in 
plan view. Each of the four simulations is derived from 
each of the four different initial strength distributions. In 
order to remove the apparent anisotropy in these images 
and to display them in their true state they would need to 
be transformed in the same manner as that shown in Fig. 
2. The spatial distributions of these fracture populations 
were analysed using the box counting method (Feder 
1988). The size distribution of these populations were 
analysed in a similar way to that of earthquakes: by 
relating fracture area to seismic magnitude using the 
relationship, magnitude ex: log (area) (Kanamori & 
Anderson 1975). If a straight line relationship is ob­
served between 10g(N) and log(area) then the size distri­
bution is fractal with the seismic b-value represented by 
the slope of this line. [N is the number of fractures 
greater than a particular area.] 

In this study, fracture area is an integer variable, thus 
at small values the size distribution curve appears 
stepped. At large areas the number of such large frac­
tures becomes under-represented since the size of the 
lattice is finite. This forces the size distribution curve to 
taper off at high area values. The decrease in the total 
number of fractures as each simulation progresses (Fig. 
4) results from the coalescence of fractures. 
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Fig. 3. The evolution of fracture populations using: (i) a Weibull strength distribution (a--d); (ii) a random uniform strength 
distribution (e-h); (iii) a random Gaussian strength distribution (i-I); and (iv) a spatially fractal strength distribution (m-p). 
Legend: red; lattice elements failing in shear; yellow, lattice elements failing in tension; and green; lattice elements failing in 

mixed mode. 
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Fig. 4. Size distribution analyses of the fracture patterns shown in Fig. 3, where N is the number of fractures greater than 
area, and area is measured in the number of lattice elements. 

SIZE DISTRIBUTION ANALYSES 

The Weibull strength distribution 

Initial failure is widespread and occurs in mixed mode 
(Fig. 3a). As the simulation progresses the applied stress 
and the differential stress increase making shear failure 
more likely. In Fig. 3(b) areas of mixed mode failure 
have begun to coalesce and now fail in shear. In Figs. 
3( c) & (d) unstable shear crack propagation is taking 
place, i.e. failure continues without any increase in the 
applied stress. 

The fracture size distribution during this simulation 
evolves toward a fractal population. During the initial 
phase described by curves a and b in Fig. 4, a best-fit 
curve to the data would have a continuously changing 
gradient and clearly describes a non-linear relationship. 
A best-fit curve to the data in Fig. 4(c) would have a 
fairly stable gradient from small areas until the curve 
tapers off as 10g(N) drops below 1. Curve d in Fig. 4 
describes a linear relationship spanning two orders of 
magnitude where 0 < log(area) < 2 indicating a power­
law size distribution between these limits. 

The uniform random distribution 

The size distributions (Figs. 4e-h) of the fracture 
patterns in Figs. 3(e)-(h) show similar characteristics to 
the previous example with an initial non-linear relation­
ship (Figs. 4f-h) gradually changing to a more linear 
one. The last image shows a pronounced decrease in 
10g(N) at log(area) > 2 (Fig. 4h) which is probably a 
result of the finite nature of lattice size. 

The random Gaussian strength distribution 

This strength distribution produces a very sparse frac­
ture pattern which takes longer to reach instability. 
Once again the size distributions show an evolution from 
a non-linear to a linear relationship between 10g(N) and 
log(area) (Figs. 4j-l). However at the end of this simu­
lation the straight line part spans only 1.5 orders of 
magnitude and rather than a rapid falloff at greater 
magnitudes the relationship has more of a gentle taper 
(Fig. 41). 

The fractal strength distribution 

When failure first occurs it takes place in very local­
ized regions corresponding to local minima in the 
strength distribution (Fig. 3m). These failed regions 
gradually enlarge and coalesce with failure changing 
from a mixed mode to a shear type mechanism (Fig. 3n). 
By the end of the simulation failure is concentrated in 
specific regions surrounded by the stronger parts of the 
lattice (Figs. 30 & p). 

Although there is considerable fluctuation about any 
best-fit line, a generally linear relationship can be made 
out between 10g(N) and log(area) on the size distri­
bution plots shown in Figs. 4(m)-(p). This consistently 
linear relationship throughout the simulation contrasts 
with the behaviour of the other simulations described 
earlier whereby size distributions evolve toward a 
power-law relationship over time. 

The evolving pattern may be used as a first approxi­
mation to justify the fault growth model of Gillespie et 
al. (1992), where the b-value remains relatively constant 
as the maximum fault length grows. 
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Fig. 5. Box counting analysis of the fracture patterns shown in Figs. 3(m-p), where N is the number of filled boxes and box 
size is measured in lattice elements. 

ANALYSIS OF SPATIAL DISTRIBUTIONS 

All the strength distributions with uncorrelated 
spatial distributions produced non-fractal spatial frac­
ture populations. Box counting analysis of the failure 
distributions for the fractally-distributed strength distri­
bution produced generally linear functions within the 
central portion of the box size range (Le. 6 > log(box 
size) > 2). The gradients of these functions demonstrate 
a change in fractal dimension from 0.6 to 1.6 as the 
simulation progresses (Fig. 5). 

CONCLUSION 

Size distribution analysis demonstrates that spatially 
uncorrelated strength distributions produce fracture 
populations that evolve toward a power-law size distri­
bution, whereas the spatially correlated distribution 
produces consistent power-law size distributions 
throughout its evolution. Box counting analysis demon­
strates that the spatial fracture distribution is dependent 
on the initial heterogeneity: the spatially correlated 
strength distribution produces a spatially correlated 
fracture population: the spatially uncorrelated strength 
distributions result in spatially uncorrelated fracture 
populations. The disposition of initial heterogeneities, 

which is something that we know little about in nature, 
has a crucial effect on fracture populations. 
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